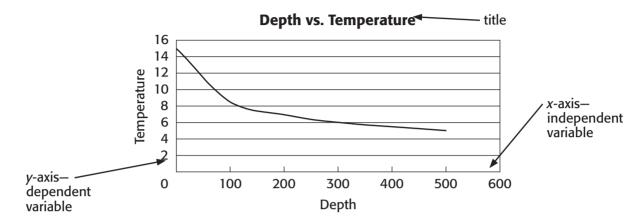
← Table of Contents


Building Process and Thinking Skills
Drawing a Graph
Reading a Graph
Organizing Data
Identifying Variables in an Experiment
Designing an Experiment
Drawing Conclusions
Predicting
Analyzing Data
Developing Concepts
Scientific Methods
Types of Maps
Reading a Topographic Map
Creating a Topographic Profile
How Minerals Form
Identifying Minerals
Types of Minerals
Reading a Mineral Composition Table
Crystal Systems
Density
The Rock Cycle
Comparing Types of Rocks
Igneous Rocks
Sedimentary Rocks
Metamorphic Rocks
Studying Rocks in Thin Section
Earth's Spheres
Earth's Interior
Earth's Lithospheric Plates
Types of Plate Boundaries
Types of Faults
Continental Drift
Locating Earthquakes
Locating the Epicenter of an Earthquake
T TT 1

Structure of a Volcano
Types of Volcanoes
Types of Magmas
Landform Regions of the United States
Types of Mountains
Mechanical and Chemical Weathering
Soil Horizons
Mass Movements
Land Features Associated with a River
Glacial Landforms
Types of Fossils and Fossil Formation
Rock Layers and Fossils
Half-Life and Radioactive Dating
Geologic Time Scale
Precambrian Time
Paleozoic Era
Mesozoic Era
Cenozoic Era
Nonrenewable Energy Resources
Formation of Coal53
Renewable Energy Sources
Fossil Fuel Power Plant
Nuclear Power and Nuclear Power Plants56
The Carbon Cycle
The Water Cycle
Ground Water
Water Pollution and Biological Magnification
Water Use in the Home
Waves
Phases of the Moon and Tides
Ocean Water
Shoreline Features
Ocean Currents
El Niño and La Niña67
The Ocean Floor
Coral Reefs

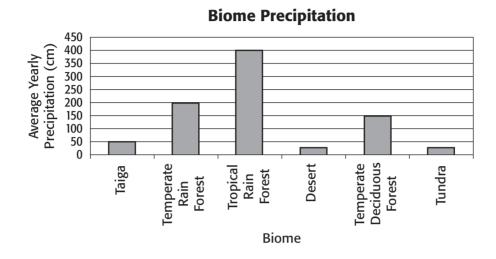
Marine Habitats
The Ocean Bottom
The Open Ocean
Structure of the Earth's Atmosphere
Global Heat Budget74
Insolation
The Greenhouse Gases
Global Wind Patterns
Clouds and Weather
North American Air Masses
High Pressure and Low Pressure Systems
Warm and Cold Fronts
Creating a Station Model
Reading a Weather Map83
Severe Weather
Tracking a Hurricane
Acid Rain
Climate Zones
Factors Affecting Climate
The Seasons
Phases of the Moon90
Eclipses
Space Exploration
Structure of the Sun
The Solar System94
The Inner Planets95
The Outer Planets
Other Solar System Objects
Hertzsprung-Russell Diagram98
Life Cycle of a Star99
Orbit of the Planets
Answer Key

Drawing a Graph

A graph is often used to see if a relationship exists in a set of data. You can use a graph to show how one variable changes in response to another variable changing.

The data in the table below was collected and placed in a data table.

Follow the steps below to graph the data.


- **Step 1** Draw an x-axis and a y-axis.
- **Step 2** Label the *x*-axis with the independent variable—this is the variable you change.
- **Step 3** Label the *y*-axis with the variable that is the dependent variable—the variable that is a result of changing a variable.
- **Step 4** Decide on the scale for each axis. Look at your data. Determine the range of the data for each axis. Choose a scale that has the numbers equally spaced.
- **Step 5** Plot each point.
- **Step 6** Draw a line connecting the data points.

Depth (km)	Salinity (%)
0	31.22
100	33.60
200	33.94
300	34.01
400	34.07
500	34.14
600	34.20

Reading a Graph

Data collected in an experiment is often displayed on a graph. A graphical display can be an easy way to see the relationship between variables.

Use the graph to answer the following questions.

- **1.** The graph above is a bar graph. Each bar shows the data for each category that is given along the horizontal axis. What is the relationship between length of each bar and the biomes?
- **2** Which two biomes have approximately the same amount of precipitation each year?
- **3.** In which biome will you find the highest average yearly precipitation? In which biome will you find the lowest average yearly precipitation?
- **4.** To read the data in a bar graph, look at the top of a bar and read across to the vertical axis. The number along the vertical axis is the value of the data point. What is the average yearly precipitation in a temperate rain forest?
- **5.** What is the average yearly precipitation in the taiga?
- **6.** What is the difference in average yearly precipitation between the temperate rain forest and the temperate deciduous forest?

Organizing Data

Before you actually conduct an experiment, you need to decide how you will record what happens during the experiment. Often you record data in a science notebook. After you have gathered your data, you need to decide on a way to organize the data to present to others that want to see what you have gathered. Your data must be organized in an orderly way. You can follow the steps below to organize the data from the following experiment.

Temperature of water that is in a glass insulated with different materials.

Nothing: 0 minutes: 20.0°C 15 minutes: 13.3°C 30 minutes: 6.7°C 45 minutes: 0.0°C Paper: 0 minutes: 20.0°C 15 minutes: 17.2°C 30 minutes: 14.4°C 45 minutes: 11.4°C Foam: 0 minutes: 20.0°C 15 minutes: 18.9°C 30 minutes: 17.8°C 45 minutes: 16.7°C

Creating a data table will be the easiest way to organize your data. When you create a data table to organize your data the independent variable is at the heading of the first column.

- **Step 1** Place the name of the independent variable in the top of the left column.
- **Step 2** Place the headings of the dependent variable at the top of the middle and right column.
- **Step 3** Enter the data for each dependent variable in its correct column.

1.	2.	3.	4.
5.	6.	7.	8.
9.	10.	11.	12.
13.	14.	15.	16.
17.	18.	19.	20.

NAME	DATE	

Identifying Variables in an Experiment

In an experiment, you make changes in a situation and see the results. The conditions set in an experiment are known as the *variables*. A variable can be temperature, the amount of water, or amount of food given each day. In an experiment, only one factor (variable) should change. The variable that changes is known as the independent variable. The result of your experiment is the dependent variable.

The following sample experiment tests how different materials keep something warm.

- Pour 100 mL of water into each of three 150 mL glass beakers.
- Make sure that the starting temperature of the water in all three containers is 20.0°C.
- Enclose each beaker in one of the three insulating materials.
- Place each beaker in a freezer at 0°C.
- Measure the temperature in each beaker every fifteen minutes.

1.	List all the factors that could be variables in the experiment.
2.	Which of the factors remained the same in each of the three beakers?
3.	Which factor changed?
4.	Is this the independent or dependent variable?
5.	You are recording the temperature every fifteen minutes. Is the temperature the
	independent or dependent variable?
6.	Suppose you placed 150 mL of water at 25.0°C instead of 100 mL of water at 20.0°C.
	Would you be certain that the changes in temperature were an accurate measure of the
	insulating power of the insulating material?
7 .	List the factors in an experiment in which you want to test the heat-holding ability of
	different liquids.

NAME	DATE	

← Designing an Experiment

When a scientist asks a question, the search for the answer to that question leads to a hypothesis. To test that hypothesis, a scientist will design an experiment. When designing an experiment you need to consider the following:

- the variable being tested,
- the variable being recorded,
- other variables that need to be the same all the time during the experiment.

You are exploring how pine needles in the soil affect the water-holding ability of the soil. The experiment is set up with two identical containers, each of which has the same type and amount of soil.

Answer the following questions regarding the variables in this experim
--

1.	What are the variables being tested?				
2.	• Which variable is easier to change? This will be the independent variable				
3.	Which variable will be the dependent variable?				
4.	List as many other variables you need to consider as you can. These variables need				
	to be kept the same for each of the soils tested. The list is started for you—name four				
	additional variables.				
	• Temperature •				
	Amount of food				
	• •				
that	te the steps of the experiment in order. Write 1 in the blank next to the step to comes first, 2 in the space next to the step that comes second, and so on. Place each of the two cups over a container that will collect any water that drains from the cup.				
6.	After the water stops draining, measure the amount of water in each of the containers below the foam cups.				
7.	Pour 100 mL of water into each plastic cup.				
8.	Poke small holes in the bottom of each foam cup. Mark a line around each cup that is 2 cm from the top.				
9.	Pack cup <i>A</i> tightly with plain soil. Pack cup <i>B</i> with soil and pine needles.				

Drawing Conclusions

Once you have recorded the results of an experiment, you must review the data to see if any patterns or relationships exist. From the patterns that exist, you can draw a conclusion, or make a statement about the relationships that exist between your variables.

The data in the table to the right shows the air temperature and air pressure recorded by a weather balloon rising over a city.

Draw a conclusion regarding the data in the table. Answer the questions by filling in the blank.

- **1.** What is the air temperature at 300 m?
- **2.** What is the temperature at 900 m?
- **3.** What is the temperature at 1,800 m?
- **4.** As the weather balloon rises in the atmosphere what happens to the air temperature?
- **5.** What is the air pressure at 300 m?
- **6.** What is the air pressure at 900 m?

Altitude (m)	Temperature (°C)	Pressure (mb)
300	16.0	973
600	16.5	937
900	15.5	904
1,200	13.0	871
1,500	12.0	842
1,800	10.0	809
2,100	7.5	778
2,400	5.0	750
2,700	2.5	721

- **7.** What is the air pressure at 1,800 m?
- **8.** As the weather balloon rises in the atmosphere what happens to the air pressure?
- **9.** What can you say about air pressure and air temperature with an increase in altitude?